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INTRODUCTION

The main thrust of mathematical analysis of deflagration. and

detonation waves since the early 1970':; has been through the

application of activation energy asymptotics (AEA) as in

Buckmaster and Ludford (1982). While this approach is of great

utility in many problems of practical interest, there are also

many cases where the activation energy cannot be taken as large,

such as in hydrogen oxidation. There is little doubt that

hydrogen will be an important fuel in the coming decades since

the need for energy sources with high specific energy

(automobiles, aircraft, Space Shuttle, etc) will be with us for

the foreseeable future and concerns, both real and imagined, over

the release of carbon dioxide into the environment are mounting.

With these concerns in mind, mathematical methods for the

study of combustion phenomena needed to be developed through the

application of large heat release asymptotics (LHRA). Previous

work in this area for deflagration waves is scant (Mikolaitis,

1986a, 1986b, 1987a) although similar 3deas have been used in the

analysis of well stirred reactors (Gray, 1973). In Mikolaitis

(1986a), the structure of the adiabatic, plane deflagration wave

with one step, irreversible kinetics is studied under the limit

of large heat release. In Mikolaitis (1986b), a similar analysis

is undertaken for the two-step Zeldovich-Lidn model that

includes a chain branching mechanism and a termination step. The

motivation of this work was to show that the usual AEA analyses

of this problem do not result in a realistic flame structure over

the entire range of flame temperatures but LHRA analyses do.

THE ELEMENTS OF LARGE HEAT RELEASE ASYMPIOTICS

Rates of reaction generally follow an Arrhenius rate of the

form
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rate = B (F]a[o]bTnexp(-Ea/RT)

where (F] and [O) are the concentrations of species F and 0, T is
the absolute temperature, R is the universal gas constant, B is

the pre-exponential constant, a and b are the stoichiometric

integers (these need not be integers if this rate expression is a

model for a more complicated reaction mechanism), n is the
algebraic temperature dependence, and Ea is the activation

energy. Ea/R has units of temperature and is called the

activation temperature.

In AEA it is assumed that Ea/R is very much greater than the
temperature of the reacting gases everywhere. A consequence of
this assumption is that reaction is confined to a thin sheet with

frozen reaction on one side and equilibrium on the other. The
diffusion of heat and mass, on the other hand, take place on a

much longer length scale.

In LHRA, Ea/R is taken to be of the same order of magnitude

as the flame temperature but large compared to the reactant

supply temperature. The resulting flame structure in this limit

has reaction distributed on the same length scale as the
diffusion of mass and heat and so the reaction zone and preheat

zone of the flame are of similar thicknesses.

As a concrete example, let us analyze the structure of the

downstream far-field of an adiabatic, laminar premixed flame.
The adiabatic, laminar premixed flame problem involves the

search for a steady solution to a set of nonlinear ordinary
differential equations on a doubly infinite domain. Cool, fresh

reactants are supplied far upstream of the flame and hot, burned

gases in equilibrium exist far behind the flame. The mass flux
of material normal to the flame is a parameter in the set of

differential equations and is to be determined as part of the
solution. Determining the mass flux is usually the goal of the

analysis. Of course, finite differencing for the numerical

solution of the governing equations subject to boundary

2



conditions on a doubly infinite domain is not a practical problem

and so the computational domain must be truncated.

The typical computational approaches for the cold boundary

are to assume a zero reaction rate between x=-w and some position

x=a and integrate the resulting equations to arrive at boundary

conditions at x=a or simply to transfer the cold remote

conditions directly to x=a. Both of these approaches neglect the

"cold boundary difficulty". Since the incoming stream of

reactants is not in equilibrium (otherwise it would have no

chemical enthalpy that could be turned into heat), the incoming

stream must have a positive rate of reaction and so the

conditions at infinity are not a solution to the field equations

(the reaction term is positive but the convective and diffusive

terms must be zero and so cannot balance the reaction term). In

practice a steady solution appears to exist due to the fact that

real flames only propagate finite distances and the rate of

reaction in reactant stream is very small. This allows the flame

to reach the combustible mixture long before any appreciable

reaction takes place in the fresh mixture at the cool reactant

temperature. One of the triumphs of AEA was that it allowed a-

rational analysis of the steady flame problem without introducing

in an ad hoc manner any extraneous term in the reaction rate

expression. One simply realizes that the "steady" solution is

the leading order solution to an intrinsically unsteady problem.

Here we have generalized this idea through LHRA. It is not

necessary that the activation temperature be considered as large

compared to the flame temperature but only that the activation

temperature is large compared to the cool reactant temperature.

When viewed in this way, AEA is seen to be a limiting case of the

more general treatment through LHRA.

For the hot boundary it is typical to specify equilibrium

conditions at some position x=a+L where L is "sufficiently"

large. The sufficiency is usually tested by increasing L and

comparing the resulting value of the steady-state mass flux with

the previously calculated value. It is typical to consider a 2%
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change as small.

Here we will show how an analysis of the downstream far-

field of a laminar adiabatic premixed flame can be accomplished

through a series of simple example problems that are of interest

in relation to several large activation energy analyses that have

appeared in the recent literature. The results of an analysis

such as this can be used to apply boundary conditions a finite

distance behind the flame consistent with the far-field

structure. This should ameliorate any errors introduced through

the truncation of the computational domain. It may also make it

possible to use a smaller computational domain in practice since

the boundary conditions derived from this analysis have the

correct approach to equilibrium built into them and so this

fairly slow process need not be reproduced in the finite

difference scheme.

There are no conceptual differences between the examples to

be investigated here and examples with complete chemical kinetics

and sophisticated multi-component transport models.

A FOUR-STEP MODEL

Changes in kinetic mechanism with flame temperature have

been invoked to explain certain phenomena peculiar to flame

propagation through very lean hydrogen mixtures (Peters and

Smooke, 1985). The Peters-Smooke four-step model in essence is a

chain branching mechanism, a product formation reaction, and a

reaction that consumes chain carriers and produces an inert

intermediate (chain termination). At sufficiently low

temperatures the chain termination mechanism dominates the chain

branching mechanism and effectively terminates the reaction by

eliminating all the active radicals. Peters and Smooke (1985)

analyzed the response of a premixed flame with this kinetic

mechanism to small aerodynamic straining (weak flame stretch)

under a fast recombination/large activation energy limit. Under
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the influence of weak flame stretch, such premixed flames with

Lewis numbers less than one (such as lean hydrogen/air mixtures)

will experience a rise in temperature above the adiabatic flame

temperature. This then was used to explain how hydrogen/air

mixtures nominally below the lean limit can support cellular

flames and why the troughs of such flames, where the flame

experiences positive flame stretch, are much brighter than the

crests (which may be extinguished) where the flame is compressed

and hence cooled.

Although this explanation is very appealing (and probably

correct for the most part) it leaves some questions unanswered.

First of all, an 0(l) increase in flame temperature above the

adiabatic value is required to move the flame temperature of the

very lean hydrogen-air mixtures above the transition temperature.

This requires 0(l) flame stretch. The analysis of Peters and

Smooke only allowed weak flame stretch. In addition, HO2 is not

inert. There are reaction paths, albelt slow ones, through which

HO2 can react to form more active radicals through an alternate

branching cycle involving the formation of hydrogen peroxide,

H2 02. Previous analytical work in detonation wave structure

(Mikolaitis, 1987b) has shown that the existence of this

alternate branching cycle has an 0(l) effect on the length of the

induction zone of even stoichiometric hydrogen-air detonation

waves. It is well known that lean premixed hydrogen-air flames

show appreciable levels of hydrogen peroxide. It is also well

known that appreciable changes in flame speed occur if HO2

chemistry is ignored. For these reasons it is very likely that

HO2 chemistry plays a major role in low temperature hydrogen-air

premixed flames. Peters and Smooke's treatment assumes that the

slow chemistry of this species is infinitely so.

As a start of a more general analysis of this problem, we

will first introduce a four-step reaction scheme that has both a

high temperature and low temperature mechanism. Secondly we will

analyze the far field flame structure that results from this

mechanism in a general context that allows 0(l) activation

5
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energies (as opposed to restricting the validity of the analysis

to the large activation energy limit).

REACTION MODELING

As is well known from reaction vessels studies, the way in

which oxygen reacts with hydrogen at low temperatures is very

different from the way they react with each other at high

temperatures. The source of this change in kinetic mechanism is

the competition between the reactions H + 02 - 0 + OH and H + 02

+ M - HO2 + M where M is a third body. The products of the first

reaction readily react with H2 to form additional radicals while

HO2 reacts with H2 to form H202 (hydrogen peroxide). The

peroxide intermediate dissociates into two hydroxyl radicals

through a relatively slow, large activation temperature reaction.

These OH radicals then quickly react with H2 to form additional

radicals.

Here we will study a simplified kinetic model that has the

following features:

1) a chain branching mechanism that dominates at high

temperatures,

2) a chain branching mechanism that dominates at low

temperatures,

and

3) a product formation/termination reaction.

This can be most easily accomplished through the four-step

mechanism

A + X X+X ()

X + X= P + P (2)

A+ X Y+ Y (3)

X + Y X + X. (4)

A represents the major reactants, X represents the highly
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reactive radicals, Y represents the relatively inert

intermediates and P represents the final product. Forward

reaction (1) is a chain branching reaction, (2) is the product

formation/termination step, (3) competes with (1), and (3) and

(4) taken together ((3) + 2 x (4)) is another chain branching

mechanism. The set of forward reactions (1-2) forms the

Zeldovich-Lidsn mechanism that has been extensively studied in

recent years (LifAn, 1971, Seshadri and Peters, 1983, Tam and

Ludford, 1984, 1985, Joulin, et al, 1985, Mikolaitis, 1986b).

Numerical subscripts will refer to the reaction numbers 1 to

4. Positive subscripts will refer to the forward reactions and

negative subscripts will refer to the reverse reactions. All

reaction rates will be assumed to be proportional to the mass

fraction of each reactant and have a general temperature

dependence. For example, the rate of reaction for the reverse

reaction (1) is X2 f_1 (T). Of course, Arrhenius reaction rates

are a special case of this more general form.

GOVERNING EQUATIONS

Under the assumption of calorifically perfect gases with

constant transport properties and also assuming low Mach numbers,

the non-dimensional governing equations describing a one-

dimensional reacting front with the aforementioned four-step

chemistry are

MT' - T" + ql(AXfl-X 2 f-l) + q 2 (X2 f 2 -P 2 f- 2 )

+ q3 (AXf3-Y 2f f-3 ) + q4 (XYf4-X2 f-4 ) (5)

MA' - 1- A" - (AXfI-X2 fI) - (AXf3-Y
2f f-3 ) (6)LA

MX' - J_ X" + (AXfI-X 2 f-I) - 2(X 2 f 2 -P 2 f- 2 )

LX

-(AXf 3 _y 2 f-. 3 ) + (XYf4-X 2 f- 4 ) (7)
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MY' Y _ + 2(AXf 3-Y
2f 3 ) _ (XYf 4 -X 2 f- 4 ) (8)

P - 1 - A - X - Y. (9)

M is the mass flux normal to the flame (constant); T is the

temperature; A, X, Y and P are the mass fractions of species A,

X, Y and P respectively; LA, LX and Ly are the appropriate Lewis

numbers; and the q's are the heat releases. Since the heat

release for species A being converted into species B must be

independent of reaction path, we have the additional relationship

q4 = (ql - q3 )/2- (10)

The boundary conditions far behind the flame are that the mixture

is in equilibrium.

THE EQUILIBRIUM STATE

For a given final temperature, Tb, where the subscript b

denotes the burned state, the equilibrium state is very easily

ascertained in closed form. If we define

2f f flf

-f4 +  f 4 + 8(f -4 +  f 3) (  (11)
4f 1 f -

f +f3

and

K = (f_1 + 02 f 3 )/(fl + f3) (12)

where the reaction rate functions are evaluated at the burned

temperature, Tb, then

Ab - K Xb, (13)

8



Yb = C Xb, (14)

and Xb satisfies the quadratic

Xb2 (-Kfl+f-1+2f2 -2(l+C+K) 
2 f_2+Kf3-C

2 f_3 -Cf4+_ 4 )

+ 4Xb(I+C+K)f_2 -2f-2 = 0. (15)

The state of the burned gases is linked to the state of the

fresh reactants through the total enthalpy. Multiplying (6) by

(ql+q2/2), (7, by q2/2, and (8) by (ql-qa2 -q3 )/2 and adding these

restilts to (5) yields after integration and the application of

boundary conditions

Tf + (ql+q 2/2)Af + q2Xf/2 + (ql+q 2 -q3)Yf/2 = (16)

Tb + (ql+q2/2)Ab + q2Xb/2 + (ql+q 2 -q3)Yb/2

where the subscript f denotes the remote, fresh state.

Specification of the cool, fresh reactant state fixes the

constant in (16) and hence substitution of (13-15) into (16)

yields a single equation for the burned gas temperature.

PHASE SPACE EQUATIONS AND PERTURBATIONS TO EQUILIBRIUM

The system of equations (5-8) are autonomous and hence the

independent variable x can be replaced with one of the dependent

variables. In most cases T can be used without difficulty. The

system is thereby reduced in order by one and the domain of the

adiabatic plane flame problem goes from being doubly infinite (-

-<x<+-) to finite (Tf<T<Tb where Tf is the temperature of the

cool, fresh reactants). Letting z = T', the governing equations

become

9



dzMz = z T + ql(AXfl-X2f-i) + q2 (X
2f2-P

2f f- 2 )

+ q3 (AXf3-Y
2 f-3 ) + q 4 (XYf 4 -X 2 t 4 ) (17)d A !1 dft d A -(Xf-2F., yf

Mz dT LA zd (z ) - (AXf 1 -X 2 f..j) - (AXf3-y 2 f. 3  18)

M dX 1 d. dX
MzdT - T z (z j) + (AXfl-X2f_,) - 2(X'f2 -P

2f-2 )

- (AXf3 -Y
2ff- 3 ) + (XYf4-X

2 f-4 ) (19)

d Ly dT (zAY) + 2(AXf3-Y
2ff- 3) - (XYf4 -X

2 f-4 ) (20)

along with (9). One of these equations may be replaced by an

enthalpy relation. When T=Tb, equilibrium holds so that

A(Tb) = Ab, X(Tb) = Xb, Y(Tb) = Yb, (21)

and

z(Tb) = 0. (22)

The price that one pays when converting a problem on an -

infinite domain to one on a finite domain is that now one has a

boundary value problem that is singular at both endpoints. Here

we will be numerically integrating the governing equations (17-

20) from one end point toward the other. It is therefore

necessary to analyze the local structure of the singularity in

order to specify proper initial conditions slightly away from thc

singular point.

Perturbations to the hot singular point can be analyzed

through the expansions

Z=e , A-Ab+et, X=Xb+eX, Y=Yb+eO, T=Tb+er, "<<. (23)

and the boundary conditions (21-22) become

(0)= (0)=X (0)=0(0)1=0. (24)
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The Dglinear limit equations resulting from the expansions (23)

are easily solved subject to the initial condiLions (24). The

system admits a solution of the form

=ar, O=bi, X=c, F=gr (25)

that satisfy (24) if a, b, c and g satisfy the algebraic

relationships

Mg = g2 + qlA1 + q2A2 + q3A3 + q4A4  (26)

Mga 1 2a - A 1 - A 3  (27)
LA

Mgb = 1 g2b + 2A3 - A4  (28)

Mgc = L g2c + A1 - 2A2 - A3 + A4  (29)
LX

where

A1 = aXbfl + Abcfl + AbXbfi - 2XbCf-1 - Xb2 f.l (30)

A2 = 2Xbcf2 + Xb2f - (1-Ab-Xb-Yb: 2 f2

+ 2 (l-Ab-Xb-Yb) (a+b+c)f-2  (31)

A 3 = Abcf 3 + Xbaf3 + AbXbfi - 2Ybbf-3 - Yb2f13 (32)

A4 = YbCf4 + Xbbf4 + XbYbf4 - 2Xbcf-4 - Xb 2f !.4•  (33)

The temperature dependency functions (fi functions) and their

derivatives are to be evaluated at the burned gas temperature Tb.

The derivative of z with respect to T is identical with

T"/T'. Since T approaches a constant, Tb, as x goes to infinity,

T"/T' is negative for large values of x. This implies that dz/dT

must be negative in the neighborhood of Tb and so g cannot be

positive.

solution to this system of algebraic equations can be

11



found with g=0 and a, b and c satisfying a set of three linear

algebraic equations whose solution in closed form is easily

accomplished. The implication of g=o in the neighborhood of T=Tb

is that the conditions of the burned gas far behind the flame is

dominated solely by chemical reaction with convection and

conduction/diffusion playing no role. This spatially homogeneous

solution also corresponds to the final approach to equilibrium of

a quiescent gas in an adiabatic enclosure. Of the multiple

solutions to the set (26-29), this is not the appropriate choice

as can be easily determined.

Letting a=ql+q 2/2, P=q2/2, 7=(ql+q 2 -q3 )/2, it is easily

shown that

M(T + aA + fX + 7Y) = z(l + A + _q_) + C (34)

LAdT LxdT LydT

is true globally where C is a constant that can be evaluated at

either the hot or cold singular point. If (34) is differentiated

with respect to T and evaluated at T=Tb with the further

restriction that dz/dT = 0 at that point (so that g=0), then

1 + aa + fc + 7b = 0. (35)

This constraint is inconsistent with the solution to the three

linear algebraic equations for a, b and c, i.e. (27-29) with g=O,

unless the three Lewis numbers are all exactly one. The case

where all the Lewis numbers are unity will be discussed later.

Therefore, although there is a solution for g=0, that solution

violates a global constraint and hence is of no interest in this

problem. We shall now consider only solutions with g strictly

less than zero.

Solutions to (26-29) with g<0 can be found numerically. The

computational difficulty is significantly reduced through the

derivation of the auxiliary equation
M(I + aa + Bc + 7b)

g +(aa/LA)+(#c/LX)+(7b/Ly)

12



to be used in place of one of the original equations. Through

the use of this equation not only is the unwanted root with g=O

avoided, the permissible solution space in the abc space is

easily located between the planes where the numerator and the

denominator of (36) are zero. Since in practice the Lewis

numbers LA, LX and Ly can be quite close to one, it is clear that

the permissible solution space can become two very narrow wedges.

In such situations, knowledge of these bounds on the solution

space is critical in determining a suitable "first guess" for

numerical root finding on this system of non-linear algebraic

equations.

THE SPECIAL CASE OF UNIT LEWIS NUMBERS

When all the Lewis numbers are identically one, there is a

further reduction in the complexity of the problem. Equation

(34) can be integrated once again to give

T + aA + PX + 7Y = constant (37)

so that

1+ a T+ , T+ Y dYT =f 0. (38)
dT dT ~dT 0 (8

We therefore now know one of the ab,c's explicitly in terms of

the other two. Furthermore, g can now be found in terms of two

13



of the a,b,c's through the quadratic solution of (26), that is

g = (M - jM 2 -4(ZAiqi))/2, (39)

where the negative root is taken as the only possible way to

generate a negative value of g.

THE REVERSIBLE ZELDOVICH-LINAN MECHANISM

A subset of the reaction mechanism (1-4) consisting of the

forward reactions 1 and 2 has received considerable attention

through the years (Zeldovich, 1948, LifAn, 1971, Seshadri and

Peters, 1983, Tam and Ludford, 1984, 1985, Joulin et al, 1985,

Mikolaitis, 1986b). If the alternate branching mechanism is very

slow compared to the main chain branching mechanism and it is

found that there is negligible amounts of Y at equilibrium, then

the low temperature mechanism (3-4) can be ignored. This is the

typical case when the flame temperature is high. Here we will

analyze the two-step mechanism (1-2) where each reaction is

reversible in order to take into account equilibrium dissociation

of the product. This is not an element of the earlier analyses

of this mechanism.

The equilibrium state as a function of burned gas

temperature is easily determined to be

1

Xb - l+f I/fl+f/f Ab - f-iX/fl, Pb = l-Ab-Xb (40)

where the temperature dependency functions, fi, are evaluated at

the burned gas temperature Tb. Expanding A, X and T in the

neighborhood of the equilibrium point through

A = Ab + 66, X = Xb + ex, T = Tb + 'T, z = (41)

leads to a set of nonlinear ordinary differential equations

14



subject to the initial conditions

S(=0) =0(rO)= (=0)=0. (42)

This set of nonlinear differential e.'-ions admit solutions of

the form

S=a,-, X=c?, =gv (43)

if a, c and g satisfy the algebraic equations

Mg = g2 + qlBl + q 2 B2  (44)

Mga = I_ g2 a - B1  (45)
LA

Mgc =_LX g 2 c + B1 - 2 B2  (46)

where

B1 = aXbfl + Abcfl + AbXbf1' - 2Xbcf- - Xb 2 f_l (47)

and

B2 = Xbcf2 + Xb 2 f2' + 2(1-Ab-Xb)(a+c)f-2

-(l-Ab-Xb) 2 f-2 '• (48)

These solutions also satisfy the initial conditions (42). As

before, there is a solution to this set of equations with g=O,

but again this solution is not appropriate. In order to avoid

this unwanted solution if numerical root finding is used it is

advantageous to rearrange (44-46) to arrive at

g = Ml+aa+B) (49)g 1+aa/LA+PC/L x  (9

provided that not both LA and LX are unity.

If both Lewis numbers are unity then an exact solution with

physically sensible behavior is easily achieved. In that case a

15



and c are related through

1 + aa + Pc = 0. (50)

(45) is then divided by a and subtracted from (44). Elimination

of c from the resultant yields a quadratic in a.

CONCLUDING REMARKS ON THE EXAMPLE PROBLEM

The approach to equilibrium behind the adiabatic premixed

flame is a very slow process that typically takes place on a long

length scale compared to the primary reaction zone thickness and

the heat conduction - major species diffusion length scale. Here

we have analyzed the structure of the approach to equilibrium

behind a premixed flame front for a four step reaction model.

The simultaneous non-linear ordinary differential equations that

describe the process can be solved ekactly up to a set of

constant coefficients. The required coefficients are found

through a set of simultaneous algebraic equations that can be

solved numerically.

The mathematical algorithm used in this example problem can

also be used in the general context of a complete chemical

kinetic mechanism with variable transport coefficients. We are

currently investigating the ozone decomposition flame as an

example problem. Through such a solution the boundary conditions

an infinite distance behind the reacting front can be brought to

a finite distance behind the reacting front without a substantial

loss of accuracy. It is also possible to reduce the

corputational domain for the calculation of an adiabatic planc

premixed flame structure significantly because the long approach

to equilibrium will be known analytically and need no longer be

resolved numerically.
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A NEW SIMILARITY SOLUTION FOR REACTING GAS FLOWS

In the AEA analysis of premixed flames the analog to the

stagnation point flow similarity solution is very similar to the

non-reacting stagnation point flow in that the gas velocities at

infinity are singular. Since this is the case, the applicability

of the analysis is restricted to the boundary layer applications

where the flame is restricted to be close to the stagnation plane

even though the solution is a solution of the full Navier-Stokes

equations.

Under the limit of LHRA, this is no longer the case.

Solutions for reacting opposed flow are found where the velocity

at infinity is finite and uniform without slip as in boundary

conditions for flow exiting a porous plug. This means that the

realistic boundary conditions are met for the full problem and

restriction to a boundary layer solution is not necessary. A

copy of the page proofs of an article on this solution is

included as Appendix A.

Why is the character of the solution different in the limit

of large heat release? The essential difference between the two

solutions is that in the AEA stagnation point flow type solution

there is a quadratic variation in pressure transverse to the

flame whereas in the LHRA solution the transverse pressure

gradient is required to be zero to leading order. There is a

mathematical argument to show that this must be true, but a non-

rigorous physical argument can be made that is more revealing.

In the study of gaseous bubbles rising through liquids,

where there is a great difference between the density of the

gaseous phase and the liquid phase, the density ratio between the

liquid and gas phases can be approximated by infinity (i.e., zero

density for the gas phase to leading order). Under these

circumstances free streamline theory can be applied and in this

theory the material surface separating the high momentum outer

flow of the liquid phase from the stagnant (to leading order)

wake fluid in the gaseous phase is a surface of constant

17



pressure. In the LHRA analysis of opposed flow we have a very

similar situation where the flame plays a role analogous to that

played by the material surface in free streamline theory. It

should therefore not be surprising that LHRA predicts zero

transverse pressure gradient and low momentum far behind the

flame.

The LHRA analysis also predicts some very interesting

behavior that cannot be predicted through AEA. It is well known

that when premixed flames with Lewis numbers less than one are

positively stretch, the flame temperature rises. If adiabatic

conditions are enforced far behind the flame, the AEA analysis of

such a stretched premixed flame would never predict extinction

and the flame temperature would continuously rise with increasing

stretch. If conductive heat loss to the gases far behind the

flame is allowed by specifying a low temperature for the remote,

burned products, then as the flame stretch is increased the flame

temperature will eventually fall (but only after the flame has

retreated far into the opposed flow) and the flame structure has

become quite diffuse. This mathematical behavior has been

interpreted as extinction even though mathematical flame

structures still exist. In LHRA, a new extinction behavior is

found that is very easy to understand and remarkable in that it

at first seems counter-intuitive: Flames can extinguish by

becoming too hot! The physics of this mechanism is very simple.

In Arrhenius kinetics the rate of reaction has a temperature

dependence that goes monotonically from 0 to a positive constant

as the temperature goes from zero to infinity and the approach to

zero is through exponentially small functions. The rate of

reaction is proportional to this quantity times the concentration

of the reactants. These concentration go monotonically from

infinity to zero as the temperature goes from 0 to infinity and

the approach to infinite concentrations is through algebraically

large functions. This means that the rate of reaction is zero

for both 0 and infinite temperature and finite and positive in

between. The rate of reaction therefore has a maximum at some

18



well defined temperature. The LHRA analysis of the far-field of

stretched premixed flames shows that a necessary condition for

flames to exist is that the flame temperature is at or below the

temperature that gives the maximum reaction rate. Since positive

flame stretch increases the flame temperature in flames with

Lewis numbers less than one, an upper bound on the flame stretch

that such a flame can endure is found.

It should be pointed out that the similarity solution given

in Appendix A is a much closer analog to experiment than the

stagnation point flow solutions whenever the flame is away from

the stagnation plane.

CONTINUING WORK IN LHRA

In the short term, work is continuing in LHRA along two

fronts: the analysis of ozone decomposition flames and the

generation of other premixed flame structures with multi-step

kinetics. The ozone flame is a particularly attractive example

problem because it has been studied through conventional

numerical approaches (Heimerl and Coffee, 1980) and through

conventional AEA methods (Rogg and Wichman, 1985, amoung others).

The results of this analysis (undertaken as part of a Master's

program by a graduate student at the University of Florida,

Department of Aerospace Engineering, Mechanics and Engineering

Science) should be more accurate than both the numerical

solutions where 2% convergence was deemed adequate and the AEA

solutions where reaction is mathematically restricted to a much

thinner region than is seen in practice.

In the long term, it is hoped that this research will result

in faster computing methods for the prediction of flame

structures for both stretched and unstretched premixed flames

through the generalization to complete chemical kineteics of the

mathematical results generated so far. It is envisioned that

this process can be completely automated so that the user need
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simply enter the kinetic scheme that is to be used and the

program will automatically construct the far-field solution and

so forth.

Another application of LhKRA is in the study of diffusion

flames. This will require a different methodology because the

temperature is not monotonic through the flame structure. There

are other variables that are, however, and so this is not an

insurmountable problem.
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On the Abrupt Extinction of Premixed Flames with Lewis
Numbers Less Than One

DAVID W MIKCOLAITI 2 f).':vrynvnl d Atorospirce Eli~qiieprf'q] A4fec17afJiGs. jod

Etiqo'-?rnq Sc:,.tu:, UinvP ;ly of Floridai. G~jin-.'v'le. FL .3267 1

( Re csu d 111 tt 2 92 ofd (u11,11 h"rf J1411. 27. 19,lm

Ahuoa-Iferc *%. have analweyid Ie lie eernaing equtiions oir reacting Itmw Mach numbe~r flow for plane
prcrined (lie airuciurcs in nlon-umiftiri it)%low fiefdi given Ithat t he ictivaflon iersi(vr:ItuFC ofl thc mn.iitre
is large coimprcd !ti the Im peiir. Iure (it I li resistIe reactank. A nc I i:nctien techan.mtn iN u ticvered 1(,r
flam~e% with Lc. a. numhcr 1- than one that cannoti he, found hfrtitih t he u~e ol jactivatton cieltc
&; niptaiic. i hintit %here tie acit%,aw tol enlicfratu(c oifthe mi xiur: 1, larap: oiirp.ard w~ the hurned c
ternricrature.

I NTRODU'CTIO N

A central problem tin combustion theor% is to understand the influence of non-
uniform flows on burning rate. A particularly simple model problem that has been
extensively studied throughi the use of activation encrgy asympbotics (AEA) is the
premixed flame in an opposed flow with .4 -B irreversible kinetics. Analysis of this
problem have been performed undcr the constant density approximation (Buckmaste. r
1979. and Buckmastcr and ',Iikolaitis. 1982) and with full fluid mechanical coupling,
under a boundary layer approximation (Libby and Williams. 1982. 1983. 1984. and
Libby. Lifi~n. and Williams. 1983). None of these studies have revealed an abrupt
extinction mechanism for adiabatic prcmixed flames with Lewis numbers sufficientlY
less than one.

Here we will perform an analysis of the preinixcd flame in an opposed flow without
making a boundary layer approximation or assuming that the activation energy is
large. All we will assumie is that the activation temperature is laree compared to the
temperature of the cool remote reactants and that the burned gas temperature is on
the order of magnitude of the activation temperature. In this w%-a% the concept of an
adiabatic flame speed is retained by making the reaction rate of the cool reactants
exponentially small compared to the reaction rate in the flame itself. Reaction will no
longer confined to a thin sheet, however. Instead, reaction will be distributed on a
length scale comparable to the length scale of the temperature field. This has proven
to be a more realistic flame structure for relatively hot ozone flames (Mikolaitis. 1987)
and in all likelihood will apply to many other situations.

This is also in accord with the results of Colfee. Kollar. and Miller (1984) who have
studied the overall reaction concept as applied to 50%/ ozone-50%/ diatomic oxygen.
40% hydrogen-O 0/ air, and stoichiometric methane-air premixed flames. At nomni-
nal laboratory conditions for the statte of the cool reactants 0300 K and I atmosphere).
the global activation temperatures are 3974 K. 127 1. and 15 680 K with burned gas
temperatures of 1943 K, 2215 K. and 2232 K. rcspiectiveiv. These give burned gas
temperature to activation temperature ratios of' 0.489. 0,677. and 0. 143 for 501%
ozcrne-SO% air. 40%V hydrogen-60% air, and stoichionietric mecthane-air prenmixed
flames. Such numbers will bs. considered as 0(0). The corresponding ratios of cool
reactant tcmiperatures to thie activation temperature are 0.0755. 0(1917. and (0.0191.
These will be considered as small.
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DIUV ,.v + ,vV/'r" = -(p/Ul" + P( t'
2
' + (titlA'"." + tV J1)1)/3) (5)

2 = I T (6)

for coninuity. energy, species conservation. x and v momentum, and equation of
state. We have assumed in the derivation of these equations caloriically perfect gases
of equal specific heats and constant transport properties. The parameters L and P are
tle Lewis number and the Prandtl number respectively. T is the temperature non-
dimensionalized with respect to the activation temperature of the reaction. i and v are
the x and v components of velocity. p is the non-diniensionalized variation in pressure
about the ambient combustion pressure. and Y is the mass fraction of reactants.
Len,,ths have been scaled so that the coeficient of the Laplacian of T is unity and
'elocities have been scaled so that the coeflicient of the reaction term is unity. Q is the
non-dimensional heat release. The details of the non-dimensionalization can be found
in Mikolaitis (1987).

Plane flames where the x-axis is normal to the flame and the r-axis is parallel to the
lamc (see Figure I) will require that

T = T(x). Y = Y(.x). 14 = 1(.'). (7)

The equation of state immediately gives g = 2(x) so that we can define

Al S (x)u(x) = M(). (8)

Continuity now- requires that

v = - d TdM/d.. (9)

This x momentum equation (4) now shows that ep/x is a function of. x only. This then
implies that

e:p/P.Vy = 0. (10)

Substituting the right hand side of (9) for v and Al for go in the r momentum
Eu. 15) gives

p "= - y(Pd2 (T /d)/d.'Mx- - Aful( TdMM.\) Jr + T(diA1,'d.')1). (I I)



PEACTANTS x FROICTS

FIGURE I Sketch olf11 fllow field and coordinate systemn.

Applying the condition (10) results in

Pd (7"d.tf,'dx)/dx' - Md(Td.,fd.x) dx + T(d! d.\) = const (12)

so in general one can expect quadratic variations in pressure in the t direction
(transverse to the flame) for plane flames its long as the constant in (12) is non-zero.
Later we will demonstrate that this quadratic variation is inconsistent Nkith the large
heat release limit so that the constant must be zero.

The energy and species conservation equations (2-3) become

.idT/d." = d , T/il.2 + QT ' exp (- liT) (13)

.i d Y/d. = (I /L)dYid.' - T Yeexp (- liT). (14)

We now have a system of 3 non-linear ordinary differential equations to solve given
by (12-14).

LARGE HEAT RELEASE ASYMPTOTICS

The central notion of the approximation scheme that we will be using it that the
temperature of the remote upstream reactants is small compared to the activation
temperature of the reaction. Since the activation temperature is also the temperature
scale, this then requires that the remote upstream temperature is zero to leading order.
Since the (emote burned state must be a singular point of the system the reaction rate
there must be zero. This can be accomplished by taking gases far downstream as fully
burned. In order that the "regular" solution is found, we will specify that far upstream
of the flame the balance in the energy equation is between conduction and convection
with reaction being much smaller. This will prevent any "fast" deflagration wave
soiutions (see Kassoy, 1985, for example. for a discussion of fast deflagration waves.
that is dcfAeration waves where the remote upstream balance in the cold reactant gas
stream is between convection and reaction) from appearing. As a result, some of the



l( - ( =I. )'4 Y = 0',. )(+) ( :dx- 0 as V-- + 0.
(15)

(d',"'d ):( U dII'd - I as - l.

Ileforc wcdo~uss !he rest o lthe houndary conditions necessary to producea uniq tic
soltion. we will investigate how the boundary condition!; u.,ed so far influence the
choice of integrlation constant in (I_). As vx - f. the nass flux M! must approach
(01 ,idx 7 d(STi ) and so for large negati'C _V

P(T(T'IT')') - (T(T'IT'7')'(T'I7") + T((T'IT')'): -- K. (16)

%%here 'denotes derivatives with respect to v and K is the constant of integration in
(12). If any of the three terms approaches a non-zcro constant as x - - -,. then all
the terms become of the same order of magnitude and T grows quartically. In fact.
an exact solution to (16) is given by T = K.'/(27 - 6P). From this we can get the
rest of the unknowns (u. v, p, o) for an exact solution to a viscous. conducting
incompressible flow problem.

The only other way to have the left hand side approach a constant is if two of the
terms become %cry large but their sum approaches a constant. This becomes impos-
sible because if two of the terms become of the same order of magnitude. then it is
easily determined that Tmust attain quartic growth as before. This then implies that
the only permissible value of the constant is zero and so now our set of three
governing equations is (12-14) with the constant for equation (12) being 0. This
condition implies that there is no transverse pressure gradient.

The physical reason why there cannot be a non-zero transverse pressure gradi-
ent is that the density ratio of the hot product gas stream to the cold reactant
stream becomes infinite in the large heat release limit. Therefore the interface between
the hot and cold gases behaves in a manner similar to the liquid-las interface
of a rising bubble (i.e.. free streamline theory). A practical combustion problem
that may have this character is a premixed flame attached to a bluff body. In that
configuration the flame sheet roughly separates cold. high momentum fluid in
the free stream from hot. low momentum fluid in the recirculation zone. Since
the density difference between the freestream and the wake can be large. say a
factor of 7 or 8. the separation streamline might be profitably considered as a free
streamline. Since the wake gasies are so slowly moving in the recirculation zone
of an attached premixed flame, it may be better to analyze the flame structure
through the limit given here rather than through a boundary layer analysis where
the speed of the remote reactants is taken to be very much larger than the local
flame speed.

THE REMOTE BURNED STATE

An analysis of appropriate to the remote burned state can also be performed. In this
case we will transform the problem into a phase space with T as the independent
variable through the definition

dT d." (17)



I'..EtI I(:d 11 Eli) dT).dT - M: d(T: dMt//d! + "/-:2(dMt d1Tl' = (l~,

.'1 = :/EliT + 7" )'"xp(-Ii): (19)

.1l,[)"dI" IL) d(ed)'dT)dT - T" 1 'xp(- I '': (21)

and Ih partial .ct of boundary conditions (15) become

Y" (T) Y (. :(0) = 0. :(T = 0.

(d:/dT)IM - I as T - 0 (21)

where 1; is the final temperature of the burned gases. T, is to be determined as part
of the solution.

We will now look for solutions to this system in the neighborhood of the point
T = T,, Y = 0. = 0. M = M, through the Icading order expansions

T = T, + :. ,= r.. Y = i:Y. .11 = M 4 - (im. 1: 4 I. 6 1I (22)

appropriate to this problem.
The system governing the behavior in the far field is

tl;fdr = Mo- Q T7 'exp I T)'; (23)

d(.dy/dr)dr = L(MWAv,d: + T,"-' y exp ( - I T, .;) (24)

dm d = - 3(djdt)(d2m'dr2)i. - (d.idr)- (din d7) '2 - (d2.dr")(dni:jZ

+ M,((d; df)(hnidr)i + (d-midr- C P (25)

with initial conditions

;(0) = y(0) = IM(0) = 0. (26)

The ecneral solution to this underdetermined non-linear system is

= r (27)

= Br (28)

in = Cltl" (29)

where

A = (LM,, - X (LM , + 4L-')| 2 (30)

B = M,,(I - L).. Q;" - L;Q (31)
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.= ,, ../' (32)

7 e7.'Lxp --1/7") 031

and { is arbitrary. Casting the solution )''ck into the original variables we then get

the appro.imae solution

: z A(T - 7T) (34)

Y 8(T- 7) (35)

M M,, + C(T, - T)' (36)

if we take

I .. (37)

A number of points can be addressed with this solution lbr the far field structure.
If the solution for the perturbation to the mass flux, in. is to make any sense we must
have a > 0 or C = 0. In the case where C = 0 we can take b as an arbitrarily small
scale compared to r. This then implies that the variation in M within the .neighbor-
hood of T = T is identically zero and so every derivative of M with respect to Tmust
vanish at T = T. We therefore know that Al must be identically zero in some finite
neighborhood ef T = T or else it has an essentially singularity at T = T,. Numerical
calculations on the full Eqs. (18-20) indicate the former and furthermore show that
M is identically constant from T = 0 to T -= Tf. Of course the boundary conditions
at T = 0 are not met in general, but for a specific choice of M0 they are. That choice
is the adiabatic burning rate.

Since our interest is in the effects of flow non-uniformities, and therefore varying
M. attention must be placed on the case where C # 0. When this happens we must
conclude that M. is negative in order that x is positive. The reason for this is that as
x - oo either T' is positive and T' is negative of T' is negative and T' is positive if
Tapproaches a constant value. This implies that d:/dT(which is the same as T'iT')
must be negative at T = T. We therefore know that .4 is negative. Of course, the
Prandtl number P is positive and hence if x is to be positive then M0 must be negative.
This result is not too surprising. A more interesting conclusion can be reached once
the condition of non-negative mass fractions is applied. In the far field the imposition
of non-negative mass fraction requires that B < 0. This will be true for any negative
value of M, if L > I but will not be true in general if L < I. When L < I a critical
mass flux + x given by

Moc -/L;'l - L) (38)

can be uncovered. B vanishes at this particular value of M. If MO is smaller than MOC.
then B as defined by (31) becomes positive and hence the mass fraction of reactant
becomes negative in thc far field. Since this is impossible. we must have

- < , 0 (39)

when L < I.
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The inequality (39) can he rewritten in lite frni

"I," ' exp 1;T,7) 1 0I - )tl: -.O.(0

offi > 1. t'i the lft hand ,idc c.f (40) i, i n'.1 1t!rc,,!: m,-:asina fu|,j:ion tof

It that inicrasCs without hound. Ior a . vahle o;f ,,, aod Let;,, number less th.an
on:. a minimum possible burned gais teinperaur,. is prcdiLted. This situation is ot
limited interest because it correspo nds to a reaction rate that i;i.reases without hound
with temperature. This is hardly realistic in tht for -tllhcely hi.,l temperatures the
fraction ofcollisions that have the requisite amount of energy tpproaches one while
the density of the reactants approaches zero. We therefore know that the rate of
reaction must go to zero as the temperature goe; to infinitv.

In the case where n = !. again a minimum burned gas temperature is predicted but
the left hand side of (40) no longer grows without bound. Since the left hand side
of (40) is bounded between 0 and I for all positive values of T. , is bounded
between 0 and L;( I - L). In this case a minimum value of .1, is predicted. namely
- .L/( I - L). that is attained at an infinite flame temperature. At any finite flame
temperature the value of ., must be higher. Again this case is of limited interest
because now the rate of reaction goes to a positive constant instead of zero as the
temperature goes to infinity.

When it < I the left hand side of (40) is no longer monotone but achieves a
maximum value at a finite temperature. This again puts a bound on VM, but now the
minimum value is achieved at a finite temperature.

This predicts a maximum possible amount of blowing from behind. that is a
minimum possible value of ,i,. if the Lewis number is less than one and the reaction
constant n is less than or equal to one so that the rate of reaction approaches zero as
the temperature becomes infinite. This lower bound on Vh, is surprisingly independent
of the composition of the fresh mixture. The maximum possible value of jOI is
attained at a final burned gas temperature of [/(I - n) and has a value of

IM,I.,. = /L(I - n)"' exp (n - 1).(1 - L) (41)

This means that as the blowing from behind the flame is increased, extinction
must occur at or before the value of the blowing given by (41) if both L and n
are less than one.

The physical reason for the restriction on n is that when a is less than one. the
reaction rate eventually begins to fall as the temperature rises. For large enough
temperatures the drop in overall concentration with rising temperature overwhelms
the increase in the concentration of sufficiently energetic molecults as represented by
the exponential term. This behavior can appear for Le4 js numbers less than one
because the blowing from behind increases the temperature of the mixture, a fact
that has been confirmed through numerical integration of the governing equations.
Sufficiently large amounts of blowing can conceivably raise the temperature to the
point where the reaction rate begins to fall due to a sufficiently large drop in density.
This effect is the reason for the restriction (41). This type of extinction mechanism
cannot be studied through the use of AEA since it can only occur when the final gas
temperatures are of the same order ol magnitude as the actlivation temperature.

Here we have taken the mass flux of the remote opposed flow to be finite and yet
in the AEA/boundary layer solutions the magnitude of the mass flux appears to grow
without bound. There is no inconsistency, however. In the A EA solutions the velocity
scale is the adiabatic flame speed whereas here we have used a velocity scale that

L



normai?,.s the: co.liciit (If tic reaction term. The AEA solutions,, ,hcre the Icnip'ra-
ture orthe rcmoc reactmts is small. can bh" recovered by restricting T, to b. sinalI and
taking 3f,, to he large comparied to the adiabatic burning rate. This is nossihle ccn
though the cfital ', Alut; of Al, appfroaches zero its 7, goes to zero because thL critical
mass flux is 0 7( , )1 whereas the adiabatic burning rate is O(\'7(T )T, ) and so the
critical mass flux is much larger.

Arrhcnius kinetics are not an essential feature fo this extinction mechanism. If we
us a reaction rate temperature dependence of the form .f(T) where f(O) = 0,
1(T) - Oas T - c.f(T) > 0 for T > 0, andf(T) continuous then we can derive
the result that

Vj < Lj(T)i(l - L) (42)

when the Lewis number L is less than one. These restrictions onf(T) are all physically
realistic in that we expect essentially zero rate of reaction for small temperatures,
diminishing rate of reaction for very high temperatures since the fraction of sufficiently
energetic molecules can become no higher than one and the concentration o" reactants
must decrease with temperature, and the rate of reaction must always be positive.
Since the physically realistic restrictions imposed on f(T) imply that f(T) has a
maximum value, we can therefore conclude that there is a maximum amount of
blowing that a flame with Lewis number less than one can withstand and this
maximum is no greater than that predicted by (42).

Although an extinction mechanism like this is predicted mathematically, the
question remains as to whether or not it is physically accessible. In addition, it is
possible that the failure of a physically realistic flat-flame similarity solution to exist
only indicates that the solution bifurcates or jumps to a nonplanar solution. A
complete answer to these questions would require the study of a complete reaction
mechanism, large scale numerical simulations, developing appropriate existence and
uniqueness theorems, experimental investigation, or some combination. Such a task
is beyond the scope of this work.

CONCLUDING REMARKS

HeR we have shown that there exists a potential mechanism for the abrupt extinction
of aerodynamically strained premixed flames with Lewis numbers less than one. The
surprising leature of this mechanism is that instead of the usual notion o1 a flame
extinguishing by becoming too cold, here flames can extinguish by becoming too hot.

The physics of this mechanism is surprisingly simple. When the Lewis number of a
combustible mixture is less than one, aerodynamic straining of the flame will cause a rise
I ,"la ic t, mtiatuie. Evcoitually the rate or icaction must 'ali due to the fact that the

concentration of active species is inversely proportional to the temperature (if the
pressure is fixed) and the fraction of sufficiently energetic collisions can be no greater
than one. This failing reaction rate with increased blowing can extinguish lhc flame.

The question remains as to whether or not this extinction mechanism is accessible
to physical flames. Perhaps a simple experiment can reveal the answer.
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ABSTRACT

The far field of a stretched premixed flame with A-B*C

kinetics is studied. Each of the reaction rates are assumed to be

proportional to the mass fraction of the reactants and have a tempera-

ture dependence that is continuous, positive, and vanishes at both

infinite and zero absolute temperature. Arrhenius reaction rate

functions are examples that satisfy these requirements. Bounds are

uncovered for t)-- _,ount of blowing from behind the flame that plane

premixed flames can withstand for all Lewis numbers when the interme-

diate species are lighter than the deficient reactant. When the

intermediate products are heavier than the deficient reactant, bounds
on the blowing are found when the Lewis number of the deficient

reactant is less than one.

INTRODUCTION

Through the analysis of the far field of adiabatic stretched
premixed flames with A-B kinetics, we have been able to show that
premixed flames with Lewis numbers less than one will be extinguished

given sufficiently strong blowing from behind [1]. This is inferred

from the analysis in that the mass fraction of combustible becomes

negative in the far field if the opposed flow is above a maximum
allowable level. The activation energy asymptotic (AEA) analyses of

this case (2-7] do not show true extinction. What we mean by true

extinction is the failure of existence for a flame structure for

sufficiently strong opposed flow.

In the previous work [1] it was unclear as to what effect
dissociation would have on the results. Here we will investigate a
kinetic mechanism that incorporates dissociation. The simplest

possible reaction mechanism that would include dissociation is A.B.
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It seems unlikely that the analysis of such a machnrism would revea!

anything of interest in that the final equilibrium state would be

composed of major species only without any intormediates. A more

plausible model is the A-B-C mechanism where 2 represencs intermediate

products and the final equilibrium state is dominated by intermediate

and final products.

The plan of this paper is to first analyze the far field of
the stretched A-B-C flame so that the case without dissociation is

fully documented. Once the non-dissociating model is fully explored

we shall include the effects of dissociation.

MATHEMATICAL MODEL

The equations that model two-dimensional, low Mach number

combui.:ion waves under the assumption of calorifically and thermally

perfect gases with constant transport properties are

a (pu)/ax+a (pv)/ay-0 (1)

a (puT)/ax+8 (pvT)/y-V2 T+qYfl(T)+q 2Xf2 (T)-q 2Zf 3 (T) (2)

a(puY)/8x+a(pvY)/8y-(LA) lV 2 Y-Yf 1 (T) (3)

8(puX)/ax+8(pvX)/ay-(LB) -7 2 X+Yf 1 (T)-Xf 2 (T)+Zf3 (T) (4)

Z-l-X-Y (5)

Puau/ax+Pvau/ay--p/a x+P('7 2u (a (au/a x+av/ay) /a x)/3 ) (6)

#uav/ax+pvav/ay--ap/ay+P(v+2(a (au/ax+av/ay)/ay)/3) (7)

p-lI/T. (8)

u and v are the non-dimensionalized x and y components of fluid

velocity, T is the non-dimensional temperature, p is the non-

dimesional density, p is the non-dimensional pressure, P is the

Prandtl number and X, Y and Z are the mass fractions of the intermed-

late product, the reactant and the final product respectively. These

equations are continuity (1), energy balance (2), species balance (3-

5), x and y momentum balance (6-7) and equation of state (8).

Proceeding as in (1], this system can be simplified for

plara flaias ir, a iion-uniform flow field. The resulting equations

under the limit of large heat release are

NdT/dx-d2T/dx2+q1Yf (T) +q2Xf2 (T) -q 2 (l-X-Y) f3 (T) (9)

,dY/dx,(l/LA)d Y/dx -Yf1 (T) (10)

MdX/dx-(ILg)d X/dx2 +Yf 1 (T)-Xf2 (T)+(l-X-Y) 3 (T) (11)

Pd2 (TdM/dx)/dx -Md(TdM/dx)/dx+T(dM/dx) 2.0. (12)
M is the mass flux. pu. Without the limit of large heat release
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(V /
flame remote reactants > I) the right hand side of equation (12)

could be a non-zero constant.

Appropriate boundary conditions are
T(-) X --) 0.Y(-a)=Y_. T( -)-Tf, M(+-)-H,,

,(Tf)/(f2(Tf)+f3(Tf) ) ,  Y(+-)-0 (13)

where Tf is the temperature of the remote products, a quantity that

must be found as part of the analysis. In addition, a boundary

condition is needed to force the balance in the remote reactants to be

one between conduction and convection without appreciable reaction.

Such a condition is

(d2T/dx 2 )/(M dT/dx) - 1 as x . (14)

THE REMOTE BURNED STATE

Since the system (9-13) is autonomous, we can transform the

problem into a phase space problem on a finite domain with independent

variable T through the definition

z - dT/dx. (15)

The resulting system of equations is

M - dz/dT + (glYfI(T) + q2Xf2 (T) - q2(l-X-Y)f3(T))/z (16)

MdY/dT - (1/1,A) d(zdY/dT)/dT - YfI(T)/z (17)

MdX/dT - (I/LB) d(zdX/dT)/dT +

(YfI(T) -Xf 2 (T) + (1-X-Y)f3 (T))/z (18)

Pzd(zd(TzdM/dT)/dT)/dT - Mzd(TzdM/dT)/dT + Tz2 (dM/dT)2 - 0 (19)

and the boundary conditions at x-+- become

z(Tf)-0, X(Tf)-f 3 (Tf)/(f2 (Tf)+f 3(Tf)) -Xf,

Y(Tf)-0, M(Tf)-M o . (20)

Near T-Tf we can write

z - C,, Y - co, X - Xf +4-

T - Tf + er, M - MO + S.. (21)

The resulting system is

Mo - dr/dr + ql~fl(Tf) +

q 2 [,A(Tf) + hf3(Tf) + (f2(Tf)+f 3(Tf))] (22)

Ho C d/dr - (1/LA) d(C d/d,)/dr - Ofl(Tf) (23)

X 0 r d/dr - (1/Ls) d(C d /d,)/dr + fl(Tf) -

S(f 2 (Tf)+f 3 (Tf)) - Of3(Tf) - ,A(Tf) (24)

and another equation for p that is of no consequence in the remainder

of the analysis. The function A is defined by

ACT) - (f3 df2 /dT - f2 df3 /dT)/(fi + f3 ), (25)

The boundary conditions are

( O)-# (0)-f (0)-0. (26)
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The singular point described by the system (22-24, 26) is

inherently non-linear, but fortunately it admits solutions of the form

= ar , = br , = cr. (27)

Substitution into (22-24) results in

c - [LAMo - J(LAMo) 2 + 4LAfl(Tf)]/2 (28)

and the set of algebraic equations

a(qlfl(Tf)+q 2 f3(Tf)) + bq2(f2(Tf)+f3(Tf))

- Moc - c2 - q 2A(Tf) (29)

a(fl(Tf)-f3(Tf)) + b(c 2/LB - Moc - f2(Tf) - f3 (Tf)) - A(Tf) (30)

that are trivially solved for a and b so that a,b and c are now known

as functions of Mo and Tf. There is another solution for c with the

positive root in (28), but that solution is not consistent with the

fact that T approaches a constant as x goes to infinity.

THE REMOTE SINGULAR"POINT FOR NO DISSOCIATION

The solution fails to be physically realistic when a is

positive since that would correspond to a negative mass fraction for Y

near the singular point. The case where a-0 therefore defines a

critical condition.

The specification of the critical condition is very simple

in the case of no dissociation. When dissociation is neglected we

must take f3 (T)-O which implies that A-O. Setting a equal to zero and

eliminating b from (29--30) gives rise to

(Moc(1-LA)-fl(Tf)LA)(MoC(LA/LB - 1)+LA/LB fl(Tf)-f 2 (Tf))O. (31)

Substituting (28) for c gives the two critical conditions

Mo2 c - LAfl(Tf)/(l-La) (32)

and

M0
2

c = (f2(Tf)-LA/LB fl(Tf)) 2/[LA(f2(Tf)-fl(Tf))(LA/LB-l)]. (33)

Since the Lewis numbers and reaction rates are always positive,

condition (32) can only be attained when LA < I. In addition, if we

only consider the case where f2 (T) > fl(T) throughout the range of

possible final product temperatures Tf so that product formation is a

faster reaction than the breakdown of the reactants (usually a good

assumption wince the breakdown of the relatively stable reactants is

governed by a fairly high activation temperature mechanism and the

formation of product from intermediates is typically through reactions

with small activation temperatures), then condition (33) can only

apply if LA > LB. This is a very common occurence since it requires,

roughly speaking, the mean molecular weight of the intermediate

species to be smaller than the molecular weight of the deficient
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reactant. The only potential mechanism that we can think of that does

not conform to this condition is lean hydrogen oxidation where the

deficient reactant has molecular weight 2 and the intermediate species

are H, OH and 0. It is likely that the mean molecular weight of the

intermediates will be greater than 2 in this case.

Condition (32) is identical to the critical condition for

the A-B mechanism (1].

An example where LB < LA and LA > 1 is given in Figure 1.

This situation occurs when the intermediate products are ligther than

the deficient reactant and the deficient reactant is heavier than the

bulk gas. In this case only .(33) defines a limiting condition. In

this and all subsequent figures, the shaded regions are regions in the

parameter plane where the remote reactant mass flux is mathematically

negative and hence is of no physical significance.

.3

-2

-I

_ _ __ _

.5 I

Tf
Fig. 1: Critical remote mass flux versus flame temperature.LA-.2, LB-.8, qj--l, q2-2, fl-exp(-/T)/T, f2-exp(-./T)/T

Figure 2 shows a case when LA < 1 and LA < LB. Since this

case only applies to the situation where the deficient reactant is

both lighter than the intermediate products and the bulk gas, it seems

likely that it may only apply to lean hydrogen/oxygen or lean hydro-

gen/oxygen/diluent mixtures. In this case only the condition (32)

applies.

Figure 3 shows a case where LB < LA < 1. Such a situation

is likely for lean methane/air flames, for example$ where the prin-
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ciple intermodiatos acu lijhter than the doticient reactant which in

turn is lighter than the bulk fluid. In this caso critical condi-

tionn are given by both (32) and (3J).

In tho first two cases it is clear that there are no physically

realizable solutions if the remote mass flux in the burned gas

becomes too high. In the last case shown in Figure 3, the mass

fraction of the remote reactants is positive if conditions are such

that the

M c

.5 I

Tf

Fig. 2: Critical remote mass flux versus flame temperature.
LA. 5 , LB-.7, ql--l, q2 =2, fl-exp(-l/T)/T, f2-exp(-.I/T)/T

flame is above both curves. As a practical matter, however, such
solutions are probably not accessible since the starting conditions

in any real system would be in the lower domain and there is no way

to enter the upper domain in any continuous manner except through the

single point where the two domains meet. The "solution" at the point

where the two solutions meet is found as limit of problems where the

remote upstream reactant mass fraction goes to zero and hence is not

truly a flame. In fact, the solid curves are not part of the region

of physically realistic flame solutions because they correspond to

situations where the remote upstream mass fraction of reactant is

zero and hence there is no flame. This fact is found hrough

numerical integration of the governing equations,



THE REMOTE SINGUIAR PO[NT WITH DIZDCIAT1OI4

When disso:iation is retined, thy critical ho is feudr by

solving the algebraic equatior

(CMo ( I - 1,A )-L A t i | Tf)-q 2A(Tf)) (CMo(-IL/Lg)+fl(Tf)A/Lt

T)-f3(Tf)) - qgA(rf)(f2(Tf) f3(Tf))(3 4)

where C, a function of Mo , is qiven by (26). This is done most easily

by numerical root finding.

First we will consider the case where Le < LA and LA > 1,

such as a lean heavy hydroc3rbon/atr premixed Elame, with weak

dissociation.

.5 I

Figure 3: Critical remote mass flux versus flame temperature.
LA-. 8 , LB-.4, qli-l, q2-2, fl-exp(-i/T)/T, f2 exP(-.I/T)/T

A typical parameter plot is shown in Figure 4. Comparing this plot to

the corresponding case without dissociation (Figure 1) we see that

dissociation decreases the maximum amount of blowing that the flame

can withstand.

In the case where LA < LB < 1, as shown in Figure 5, the maximum

possible amount of. blowing is- increased through the action of dissoc-

iation. As mentioned earlier, such *n ordoriin of the Lewis numbers

io very infrequent in applications. One of the only possible physical

systems that night have such an ordering is lein hydrogen/air preuixed

flames.

The case where Le < LA < 1 is shown in Figure . This manner at



Lewisi number orderinq is c?arActeritL Of rich propane or no~avitt

nydroc4ruon/aii( mixtures. It is a~lltr4st,&Ag to not# ti'st teT" £1

langor a~ maimium Amount of bluwIuiq pr..Slcte4 ijy Lho aualysis of tion

.3

,127/

4/4/

Le.5 ~. LS7q-1 2twx1IT/



7r

remote burned state. A gap opens up through which solution curves

may pass &nd the stronger the rate of dissociation, the wider the gap.

It is probable,though we hasten to add that we have not checked this

result fully, that i situation can arise where near stoichliosetric

mixtures will extinguish with sufficiently high blowing but rich

mixtures will not with some pivotal value of the remote mass traction

of reactant, denoted by Yc, that seperates the two cases. This

phenomena is shown schematically in Figure 7. As the rate of dissoc-

iation is increased, the gap should widen with a subsequent increase

in the pivotal value of the remote reactant mass flux. With a

sufficiently high rate of dissociation, it seems likely that the

pivotal value of the mass fraction of reactants should go to I with

further increases in the rate of dissociation resulting in no maximum

rate of blowing.
"Li

*L2

-.4,

.5 I

If
Figure 6: Critical mass flux versus flame temperature.LA-.8, LB-.4, qlm--, q2-2, fl-exp(-1/T)/T

f2-exp(-.l/T)/T, f3-.001 exp(-2/T)/T

CONCLUDHG REMARKS
Here we have analyzed the response of a plane premixed flaxe with

sequential kinetics to a non-uniform flow field. Two seperate case:

were investigated; one where the second step was irreversible and one
where it was revertible. The inclusion of reversibilty in the secnd

step did not alter the qualitative flame response except In the case
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